Tuesday, February 26, 2019

IT kit sustainability: A business advantage and balm for the planet

https://www.hpe.com/us/en/services/asset-lifecycle.html
The next BriefingsDirect sustainable resources improvement interview examines how more companies are plunging into the circular economy to make the most of their existing IT and business assets.

We’ll now hear how more enterprises are optimizing their IT kit and finding innovative means to reduce waste -- as well as reduce energy consumption and therefore their carbon footprint. Stay with us as we learn how a circular economy mindset both improves sustainability as a benefit to individual companies as well as the overall environment.

Listen to the podcast. Find it on iTunes. Read a full transcript or download a copy.

Here to help us explore the latest approaches to sustainable IT is William McDonough, Chief Executive of McDonough Innovation and Founder of William McDonough and Partners, and Gabrielle Ginér, Head of Environmental Sustainability for BT Group, based in London. The discussion is moderated by Dana Gardner, Principal Analyst at Interarbor Solutions.


Here are some excerpts:

Gardner: William, what are the top trends driving the need for reducing waste, redundancy, and inefficiency in the IT department and data center?

McDonough: Materials and energy are both fundamental, and I think people who work in IT systems that are often optimized have difficulty with the concept of waste. What this is about is eliminating the entire concept of waste. So, one thing’s waste is another thing’s food -- and so when we don’t waste time, we have food for thought.

McDonough
A lot of people realize that it's great to do the right thing, and that would be to not destroy the planet in the process of what you do every day. But it's also great to do it the right way. When we see the idea of redesigning things to be safe and healthy, and then we find ways to circulate them ad infinitum, we are designing for next use -- instead of end of life. So it's an exciting thing.

Gardner: If my example as an individual is any indication, I have this closet full of stuff that’s been building up for probably 15 years. I have phones and PCs and cables and modems in there that are outdated but that I just haven’t gotten around to dealing with. If that’s the indication on an individual home level, I can hardly imagine the scale of this at the enterprise and business level globally. How big is it?

Devices designed for reuse

McDonough: It’s as big as you think it is, everywhere. What we are looking at is design is the first signal of human intention. If we design these things to be disassembled and reusable, we therefore design for next use. That’s the fundamental shift, that we are now designing differently. We don’t say we design for one-time use: Take, make, waste. We instead design it for what's next.

And it's really important, especially in IT, because these things, in a certain way, they are ephemeral. We call them durables, but they are actually only meant to last a certain amount of time before we move onto the next big thing.
Learn How to Begin
Your IT Circular Economy Journey
If we design your phone in the last 25 years, the odds of you using the same phone for 25 years are pretty low. The notion that we can design these things to become useful again quickly is really part of the new system. We now see the recycling of phone boards that actually go all the way back to base materials in very cost-effective ways. You can mine gold at $210 a ton out there, or you can mine phone boards at about $27,000 a ton. So that’s pretty exciting.

Gardner: There are clearly economic rationales for doing the right thing. Gabrielle, tell us why this is important to BT as a telecommunications leader.

Ginér: We have seen change in how we deal with and talk to consumers about this. We actually encourage them now to return their phones. We are paying for them. Customers can just walk into a store and get money back. That’s a really powerful incentive for people to return their phones.

Gardner: This concept of design for reuse and recovery is part of the cradle-to-cradle design concept that you have helped establish, William. Tell us why your book, Cradle to Cradle, leads to the idea of a circular economy?

Reuse renews the planet

McDonough: When we first posited Cradle to Cradle, we said you can look at the Earth and realize there are two fundamental systems at play. One is the biological system of which we are a part, the natural systems. And in those systems waste equals food. It wants to be safe and healthy, including the things you wear, the water, the food, all those things, those are biological nutrients.

Then we have technology. Once we started banging on rocks and making metals and plastics and things like that, that’s really technical nutrition. It’s another metabolism. So we don't want to get the two confused.

When we talk about lifecycle, we like to refer it to living things have a lifecycle. But your telephone is not a living thing -- and we talk about it having a lifecycle, and then an end of life. Well, wait a minute, it's not alive. It talks to you, but it's not alive. So really it's a product or service.

In Cradle to Cradle we say there are things that our biology needs to be safe, healthy, and to go back to the soil safely. And then there is technology. Technology needs to come back into technology and to be used over and over again. It's for our use.

https://www.hpe.com/us/en/services/asset-lifecycle.html

And so, this brings up the concept we introduced, which is product-as-a-service. What you actually want from the phone is not 4,600 different kinds of chemicals. You want a telephone you can talk into for a certain period of time. And it's a service you want, really. And we see this being products-as-services, and that becomes the circular economy.

Once you see that, you design it for that use. Instead of saying, “Design for end-of-life. I am going to throw it in a landfill,” or something, you say, “I design it for next use. That means it’s designed for disassembly. We know we are going to use it again. It becomes part of a circular economy, which will grow the economy because we are doing it again and again.

Gardner: This approach seems to be win-win-win. There are lots of incentives, lots of rationales for not only doing well, but for doing good as companies. For example, Hewlett Packard Enterprise (HPE) recently announced a big initiative about this.

Another part of this in the IT field that people don't appreciate is the amount of energy that goes into massive data centers. The hyperscale cloud companies are investing billions of dollars each a year in these new data centers. It financially behooves them to consume less energy, but the amount of energy that data centers need is growing at a fantastic rate, and it’s therefore a larger percentage of the overall carbon footprint.

William, do carbon and energy also need to be considered in this whole circular economy equation?

Intelligent energy management

McDonough: Clearly with the issues concerning climate and energy management, yes. If our energy is coming from fossil fuels, we have fugitive carbon in the atmosphere. That's something that's now toxic. We know that. A toxin is material in the wrong place, wrong dose, wrong duration, so this has to be dealt with.

Some major IT companies are leading in this, including Apple, Google, Facebook, and BT. This is quite phenomenal, really. They are reducing their energy consumption by being efficient. They are also adding renewables to their mix, to the point that they are going to be a major part of the power use -- but it's renewably sourced and carbon-free. That’s really interesting.
Learn How to Begin
Your IT Circular Economy Journey
When we realize the dynamic of the energy required to move data -- and that the people who do this have the possibility of doing it with renewably powered means – this is a harbinger for something really critical. We can do this with renewable energy while still using electricity. It's not like asking some heating plant to shift gears quickly or some transportation system to change its power systems; those things are good too, but this industry is based on being intelligent and understanding the statistical significance of what you do.

Gardner: Gabrielle, how is BT looking at the carbon and energy equation and helping to be more sustainable, not only in its own operations, but across your supply chain, all the companies that you work with as partners and vendors?

Ginér: Back to William's point, two things stand out. One, we are focused on being more energy efficient. Even though we are seeing data traffic grow by around 40 percent per year, we now have nine consecutive years of reducing energy consumption in our networks.

Ginér
To the second point around renewable energy, we have an ambition to be using 100 percent renewable electricity by 2020. Last year we were at 81 percent, and I am pleased to say that we did a couple of new deals recently, and we are now up at 96 percent. So, we are getting there in terms of the renewables.

What's been remarkable is how we have seen companies come together in coalitions that have really driven the demand and supply of renewable energy, which has been absolutely fantastic.

As for how we work with our suppliers like HPE, for example, as a customer we have a really important role to play in sending demand signals to our suppliers of what we are looking for. And obviously we are looking for our suppliers to be more sustainable. The initiatives that HPE announced recently in Madrid are absolutely fantastic and are what we are looking for.

Gardner: It’s great to hear about companies like BT that are taking a bellwether approach to this leadership position. HPE is being aggressive in terms of how it encourages companies to recycle and use more data center kit that’s been reconditioned so that you get more and more life out of the same resources.

But if you are not aggressive, if you are not on the leadership trajectory in terms of sustainability, what’s the likely outcome in a few years?

Smart, sustainable IT

McDonough: This is a key question. When a supplier company like HPE says, “We are going to care about this,” what I like about that is it’s a signal that they are providing services. A lot of the companies -- when they are trying to survive in business or trying to move through different agendas to manage modern commerce -- they may not have time to figure out how to get renewably powered.

But the ones that do know how to manage those things, it becomes just part of a service. That’s a really elegant thing. So, if a company like HPE says, “Okay, how many problems of yours can we solve? Oh, we will solve that one for you, too. Here, you do what you do, we will all do what we do -- and we will all do this together.” So, I think the notion that it becomes part of the service is a very elegant thing.

As we see AI coming in, we have to remember there is this thing called human intelligence that goes with it, and there is natural intelligence that goes with being in the world.
Gardner: A lot of companies have sustainability organizations, like BT. But how closely are they aligned with the IT organization? Do IT organizations need to create their own sustainability leaders? How should companies drive a more of the point of the arrow in IT department direction?

McDonough: IT is really critical now because it’s at the core of operations. It touches all the information that’s moving through the system. That's the place where we can inform the activities and our intentions. But the point today is that humans, as we see artificial intelligence (AI) coming in, we have to remember there is this thing called human intelligence that goes with it, and there is a natural intelligence that goes with being in the world.

We should begin with our values of what is the right thing to do. We talked about what's right and wrong, or what’s good and bad. Aristotle talked about what is less and more; truth in number. So, when we combine these two, you really have to begin with your values first. Do the right thing, and then go to the value, and do it all the right way.

And that means, let’s not get confused. Because if you are being less bad and you think it's good, you have to stop and think because you are being bad by definition, just less so. So, we get confused.
Circular Economy Report
Guides Users to 
Increased Sustainability
What we really want to be is more good. Let’s do less bad for sure, but let’s also go out and do more good. And the statistical reference points for data are going to come through the IT to help us determine that. So, the IT department is actually the traffic control for good corporate behavior.

Gardner: Gabrielle, some thoughts about why sustainability is an important driver for BT in general, and maybe some insights into how the IT function in particular can benefit?

Ginér: I don't think we need a separate sustainability function for IT. It comes back to what William mentioned about values. For BT, sustainability is part of the company’s ethos. We want to see that throughout our organization. I sit in a central team, but we work closely with IT. It’s part of sharing a common vision and a common goal.

Positive actions, profitable results

Gardner: For those organizations planning on a hybrid IT future, where they are making decisions about how much public cloud, private cloud, and traditional IT -- perhaps they should be factoring more about sustainability in terms of a lifecycle of products and the all-important carbon and energy equation.

How do we put numbers on this in ways that IT people can then justify on that all-important total cost of ownership and return on investment types of factoring across hybrid IT choices?

McDonough: Since the only constant in modern business life is high-speed change, you have to have change built into your day-to-day operations. And so, what is the change? The change will have an impact. The question is will it have a positive impact or a negative impact? If we look at the business, we want a positive impact economically; for the environment, we would like to have a positive impact there, too.

Since the only constant in modern business life is high-speed change ... for the environment we would like to have a positive impact there, too.
When you look at all of that together as one top-line behavior, you realize it’s about revenue generation, not just about profit derivation. So, you are not just trying to squeeze out every penny to get profit, which is what's leftover. That’s the manager’s job; you are trying to figure out what’s the right thing to do and bring in the revenue, that’s the executive’s job.

The executives see this and realize it’s about revenue generation actually. And so, we can balance our CAPEX and our OPEX and we can do optimization across it. That means a lot of equipment that’s sitting out there that might be suboptimal is still serviceable. It's a valuable asset. Let it run but be ready to refurbish it when the time comes. In the meantime, you are going to shift to the faster, better systems that are optimized across the entire platform. Because then you start saving energy, you start saving money, and that’s all there is to it.
Circular Economy Report
Guides Users to 
Increased Sustainability
Gardner: It seems like we are at the right time in the economy, and in the evolution of IT, for the economics to be working in favor of sustainability initiatives. It’s no coincidence that we are seeing at HPE that they are talking more about the economics of IT as well as sustainability issues. They are very closely linked.

Do you have studies at BT that help you make the economic case for sustainability, and not just that it's the good or proper thing to do?

Ginér: Oh yes, most definitely. Just last year through our Energy Efficiency Program, we saved 29 million pounds, and since we began looking at this in 2009-2010, we have saved more than 250 million pounds. So, there is definitely an economic case for being energy efficient.


Listen to the podcast. Find it on iTunes. Read a full transcript or download a copy. Sponsor: Hewlett Packard Enterprise.

You may also be interested in:

Friday, February 22, 2019

Industrial-strength wearables combine with collaboration cloud to bring anywhere expertise to intelligent-edge work


The next BriefingsDirect industrial-edge innovation use-case examines how RealWear, Inc. and Hewlett Packard Enterprise (HPE) MyRoom combine to provide workers in harsh conditions ease in accessing and interacting with the best intelligence.

Stay with us to learn how a hands-free, voice-activated, and multimedia wearable computer solves the last few feet issue for delivering a business’ best data and visual assets to some of its most critical onsite workers.

Listen to the podcast. Find it on iTunes. Read a full transcript or download a copy.

Here to describe the new high-water mark for wearable augmented collaboration technologies are Jan Josephson, Sales Director for EMEA at RealWear, and John “JT” Thurgood, Director of Sales for UK, Ireland, and Benelux at RealWear. The discussion is moderated by Dana Gardner, Principal Analyst at Interarbor Solutions.

Here are some excerpts:

Gardner: A variety of technologies have come together to create the RealWear solution. Tell us why nowadays a hands-free, wearable computer needs to support multimedia and collaboration solutions to get the job done.

Thurgood: Over time, our industrial workers have moved through a digitization journey as they find the best ways to maintain and manage equipment in the field. They need a range of tools and data to do that. So, it could be an engineer wearing personal protective equipment in the field. He may be up on scaffolding. He typically needs a big bundle of paperwork, such as visual schematics, and all kinds of authorization documents. This is typically what an engineer takes into the field. What we are trying to do is make his life easier.

Thurgood
You can imagine it. An engineer gets to an industrial site, gets permission to be near the equipment, and has his schematics and drawings he takes into that often-harsh environment. His hands are full. He’s trying to balance and juggle everything while trying to work his way through that authorization process prior to actually getting on and doing the job – of being an engineer or a technician.

We take that need for physical documentation away from him and put it on an Android device, which is totally voice-controlled and hands-free. A gyroscope built into the device allows specific and appropriate access to all of those documents. He can even freeze at particular points in the document. He can refer to it visually by glancing down, because the screen is just below eye-line.

The information is available but not interfering from a safety perspective, and it’s not stopping him from doing his job. He has that screen access while working with his hands. The speakers in the unit also help guide him via verbal instructions through whatever the process may be, and he doesn’t even have to be looking at documentation.
Learn More About Software-Defined
And Hybrid Cloud Solutions
That Reduce Complexity
He can follow work orders and processes. And, if he hits a brick wall -- he gets to a problem where even after following work processes, going through documentation, and it this still doesn’t look right -- what does he do? Well, he needs to phone a buddy, right? The way he does that is the visual remote guidance (VRG) MyRoom solution from HPE.

He gets the appropriate expert on the line, and that expert can be thousands of miles away. The expert can see what’s going on through the 16-megapixel camera on the RealWear device. And he can talk him through the problem, even in harsh conditions because there are four noise-canceling microphones on the device. So, the expert can give detailed, real-time guidance as to how to solve the problem.

You know, Dana, typically that would take weeks of waiting for an expert to be available. The cost involved in getting the guy on-site to go and resolve the issue is expensive. Now we are enabling that end-technician to get any assistance he needs, once he is at the right place, at the right time.

Gardner: What was the impetus to create the RealWear HMT-1? Was there a specific use case or demand that spurred the design?

Military inspiration, enterprise adoption

Thurgood: Our chief technology officer (CTO), Dr. Chris Parkinson, was working in another organization that was focused on manufacturing military-grade screens. He saw an application opportunity for that in the enterprise environment.

And it now has wide applicability -- whether it’s in the oil and gas industry, automotive, and construction. I’ve even had journalists wanting to use this device, like having a mobile cameraman.

He foresaw a wide range of use-cases, and so worked with a team -- with our chief executive officer (CEO), Andy Lowery -- to pull together a device. That design is IP66-rated, it’s hardened, and it can be used in all weather, from -20C to 50C, to do all sorts of different jobs.

There was nothing in the marketplace that provides these capabilities. We now have more than 10,000 RealWear devices in the field in all sorts of vertical industries.
The impetus was that there was nothing in the marketplace that provides these capabilities. People today are using iPads and tablets to do their jobs, but their hands are full. You can’t do the rest of the tasks that you may need to do using your hands.

We now have more than 10,000 RealWear devices in the field in all sorts of industrial areas. I have named a few verticals, but we’re discovering new verticals day-by-day.

Gardner: Jan, what were some of the requirements that led you to collaborate with HPE MyRoom and VRG? Why was that such a good fit?

Josephson: There are a couple of things HPE does extremely well in this field. In these remote, expert applications in particular, HPE designed their applications really well from a user experience (UX) perspective.

Josephson
At the end of the day, we have users out there and many of them are not necessarily engineers. So the UX side of an application is very important. You can’t have a lot of things clogging up your screen and making things too complicated. The interface has to be super simple.

The other thing that is really important for our customers is the way HPE does compression with their networked applications. This is essential because many times -- if you are out on an oil rig or in the middle of nowhere -- you don’t have the luxury of Wi-Fi or a 4G network. You are in the field.

The HPE solution, due to the compression, enables very high-quality video even at very-low bandwidth. This is very important for a lot of our customers. HPE is also taking their platform and enabling it to operate on-premises. That is becoming important because of security requirements. Some of the large users want a complete solution inside of their firewall.

So it’s a very impressive piece of software, and we’re very happy that we are in this partnership with HPE MyRoom.

Gardner: In effect, it’s a cloud application now -- but it can become a hybrid application, too.

Connected from the core to the edge

Thurgood: What’s really unique, too, is that HPE has now built-in object recognition within the toolset. So imagine you’re wearing the RealWear HMT-1, you’re looking at a pump, a gas filter, or some industrial object. The technology is now able to identify that object and provide you with the exact work orders and documentation related to it.

We’re now able to expand out from the historic use-case of expert remote visual guidance support into doing so much more. HPE has really pushed the boundaries out on the solution.

Gardner: It’s a striking example of the newfound power of connecting a core cloud capability with an edge device, and with full interactivity. Ultimately, this model brings the power of artificial intelligence (AI) running on a data center to that edge, and so combines it with the best of human intelligence and dexterity. It’s the best of all worlds.

JT, how is this device going to spur new kinds of edge intelligence?

Thurgood: It’s another great question because 5G is now coming to bear as well as Wi-Fi. So, all of a sudden, almost no matter where you are, you can have devices that are always connected via broadband. The connectivity will become ubiquitous.
Learn More About Software-Defined
And Hybrid Cloud Solutions
That Reduce Complexity
Now, what does that do? It means never having an offline device. All of the data, all of your Internet of Things (IoT) analytics and augmented and assisted reality will all be made available to that remote user.

So, we are looking at the superhuman versions of engineers and technicians. Historically you had a guy with paperwork. Now, if he’s always connected, he always has all the right documentation and is able to act and resolve tasks with all of the power and the assistance he needs. And it’s always available right now.

So, yes, we are going to see more intellectual value being moved down to the remote, edge user.

At RealWear, we see ourselves as a knowledge-transfer company. We want the user of this device to be the conduit through which you can feed all cloud-analyzed data. As time goes by, some of the applications will reside in the cloud as well as on the local device. For higher-order analytics there is a hell of a lot of churning of data required to provide the best end results. So, that’s our prediction.


Gardner: When you can extend the best intelligence to any expert around the world, it’s very powerful concept.

For those listening to or reading this podcast, please describe the HMT-1 device. It’s fairly small and resides within a helmet.

Using your headwear

Thurgood: We have a horseshoe-shaped device with a screen out in front. Typically, it’s worn within a hat. Let’s imagine, you have a standard cap on your head. It attaches to the cap with two clips on the sides. You then have a screen that protrudes from the front of the device that is held just below your eye-line. The camera is mounted on the side. It becomes a head-worn tablet computer.

It can be worn in hard hats, bump caps, normal baseball caps, or just with straps (and no hat). It performs regardless of the environment you are in -- be that in wind, rain, gales, such as working out on an offshore oil and gas rig. Or if you are an automotive technician, working in a noisy garage, it simply complements the protective equipment you need to use in the field.

Gardner: When you can bring this level of intelligence and instant access of experts to the edge, wherever it is, you’re talking about new economics. These type of industrial use cases can often involve processes where downtime means huge amounts of money lost. Quickly intercepting a problem and solving it fast can make a huge difference.

Do you have examples that provide a sense of the qualitative and quantitative benefits when this is put to good use?

https://www.realwear.com
Thurgood: There are a number of examples. Take automotive to start with. If you have a problem with your vehicle today, you typically take it to a dealership. That dealer will try to resolve the issue as quickly as it can. Let’s say the dealership can’t. There is a fault on the car that needs some expert assistance. Today, the dealership phones the head office and says, “Hey, I need an expert to come down and join us. When can you join us?” And there is typically a long delay.

So, what does that mean? That means my vehicle is off the road. It means I have to have a replacement vehicle. And that expert has to come out from head office to spend time traveling to be on-site to resolve the issue.
What can happen now using the RealWear device in conjunction with the HPE VRG MyRoom is that the technician contacts the expert engineer remotely and gets immediate feedback and assistance on resolving the fault. As you can imagine, the customer experience is vastly improved based on resolving the issue in minutes – and not hours, days, or even weeks.

Josephson: It’s a good example because everyone can relate to a car. Also, nowadays the car manufacturers are pushing a lot more technology into the cars. They are almost computers on wheels. When a car has a problem, chances are very slim you will have the skill-set needed in that local garage.

The whole automotive industry has a big challenge because they have all of these people in the field who need to learn a lot. Doing it the traditional way -- of getting them all into a classroom for six weeks -- just doesn’t cut it. So, it’s now all about incident-based, real-time learning.

Another benefit is that we can record everything in MyRoom. So if I have a session that solves a particular problem, I can take that recording and I have a value of one-to-many rather than one-to-one. I can begin building up my intellectual property, my FAQs, my better customer service. A whole range of values are being put in front here.

Gardner: You’re creating an archive, not just a spot solution. That archive can then be easily accessible at the right time and any place.

Josephson: Right.

Gardner: For those listeners wondering whether RealWear and VRG are applicable to their vertical industry, or their particular problem set, what are couple of key questions that they might ask themselves?

Shared know-how saves time and money

Thurgood: Do your technicians and engineers need to use their hands? Do they need to be hands-free? If so, you need a device like this. It’s voice-controlled, it’s mounted on your head.

Do they wear personal protectant equipment (PPE)? Do they have to wear gloves? If so, it’s really difficult to use a stylus or poke the screen of a tablet. With RealWear, we provide a totally hands-free, eyes-forward, very safe deployment of knowledge-transfer technology in the field.

If you need your hands free in the field, or if you’re working outdoors, up on towers and so on, it’s a good use of the device.

Josephson: Also, if your business includes field engineers that travel, do you have many traveling days where you had to go back because you forgot something, or it wasn’t the right skill-set on the first trip?

If instead you can always have someone available via the device to validate what we think is wrong and actually potentially fix it, I mean, it’s a huge savings. Fewer return or duplicate trips. 


Listen to the podcast. Find it on iTunes. Read a full transcript or download a copy. Sponsor: Hewlett Packard Enterprise.

You may also be interested in:

Wednesday, February 20, 2019

How the data science profession is growing in value and impact across the business world


The next BriefingsDirect business trends panel discussion explores how the role of the data scientist in the enterprise is expanding in both importance and influence.

Data scientists are now among the most highly sought-after professionals, and they are being called on to work more closely than ever with enterprise strategists to predict emerging trends, optimize outcomes, and create entirely new kinds of business value.

 
Listen to the podcast. Find it on iTunes. Read a full transcript or download a copy.

To learn more about modern data scientists, how they operate, and why a new level of business analysis professional certification has been created by The Open Group, we are joined by Martin Fleming, Vice President, Chief Analytics Officer, and Chief Economist at IBM; Maureen Norton, IBM Global Data Scientist Professional Lead, Distinguished Market Intelligence Professional, and author of Analytics Across the Enterprise, and George Stark, Distinguished Engineer for IT Operations Analytics at IBM. The panel is moderated by Dana Gardner, Principal Analyst at Interarbor Solutions.

Here are some excerpts:

Gardner: We are now characterizing the data scientist as a profession. Why have we elevated the role to this level, Martin? 
 
Fleming
Fleming: The benefits we have from the technology that’s now available allow us to bring together the more traditional skills in the space of mathematics and statistics with computer science and data engineering. The technology wasn't as useful just 18 months ago. It’s all about the very rapid pace of change in technology.

Gardner: Data scientists used to be behind-the-scenes people; sneakers, beards, white lab coats, if you will. What's changed to now make them more prominent?

Norton: Today’s data scientists are consulting with the major leaders in each corporation and enterprise. They are consultants to them. So they are not in the back room, mulling around in the data anymore. They're taking the insights they're able to glean and support with facts and using them to provide recommendations and to provide insights into the business.

Gardner: Most companies now recognize that being data-driven is an imperative. They can’t succeed in today's world without being data-driven. But many have a hard time getting there. It's easier said than done. How can the data scientist as a professional close that gap?

Stark
Stark: The biggest drawback in integration of data sources is having disparate data systems. The financial system is always separate from the operational system, which is separate from the human resources (HR) system. And you need to combine those and make sure they're all in the same units, in the same timeframe, and all combined in a way that can answer two questions. You have to answer, “So what?” And you have to answer, “What if?” And that’s really the challenge of data science.

Gardner: An awful lot still has to go on behind the scenes before you get to the point where the “a-ha” moments and the strategic inputs take place.

Martin, how will the nature of work change now that the data scientist as a profession is arriving – and probably just at the right time?

Fleming: The insights that data scientists provide allow organizations to understand where the opportunities are to improve productivity, of how they can help to make workers more effective, productive, and to create more value. This enhances the role of the individual employees. And it’s that value creation, the integration of the data that George talked about, and the use of analytic tools that's driving fundamental changes across many organizations.

Captain of the data team

Gardner: Is there any standardization as to how the data scientist is being organized within companies? Do they typically report to a certain C-suite executive or another? Has that settled out yet? Or are we still in a period of churn as to where the data scientist, as a professional, fits in?

Norton
Norton: We're still seeing a fair amount of churn. Different organizing approaches have been tried. For example, the centralized center of excellence that supports other business units across a company has a lot of believers and followers.

The economies of scale in that approach help. It’s difficult to find one person with all of the skills you might need. I’m describing the role of consultant to the presidents of companies. Sometimes you can’t find all of that in one individual -- but you can build teams that have complimentary skills. We like to say that data science is a team sport.

Gardner: George, are we focusing the new data scientist certification on the group or the individual? Have we progressed from the individual to the group yet?

Stark: I don’t believe we are there yet. We’re still certifying at the individual level. But as Maureen said, and as Martin alluded to, the group approach has a large effect on how you get certified and what kinds of solutions you come up with.

Gardner: Does the certification lead to defining the managerial side of this group, with the data scientist certified in organizing in a methodological, proven way that group or office?
Learn How to Become
Certified as a
Data Scientist
Fleming: The certification we are announcing focuses not only on the technical skills of a data scientist, but also on project management and project leadership. So as data scientists progress through their careers, the more senior folks are certainly in a position to take on significant leadership and management roles.

And we are seeing over time, as George referenced, a structure beginning to appear. First in the technology industry, and over time, we’ll see it in other industries. But the technology firms whose names we are all familiar with are the ones who have really taken the lead in putting the structure together.

Gardner: How has the “day in the life” of the typical data scientist changed in the last 10 years?

Stark: It’s scary to say, but I have been a data scientist for 30 years. I began writing my own Fortran 77 code to integrate datasets to do eigenvalues and eigenvectors and build models that would discriminate among key objects and allow us to predict what something was.

The difference today is that I can do that in an afternoon. We have the tools, datasets, and all the capabilities with visualization tools, SPSS, IBM Watson, and Tableau. Things that used to take me months now take a day and a half. It’s incredible, the change.

Gardner: Do you as a modern data scientist find yourself interpreting what the data science can do for the business people? Or are you interpreting what the business people need, and bringing that back to the data scientists? Or perhaps both?

Collaboration is key

Stark: It’s absolutely both. I was recently with a client, and we told them, “Here are some things we can do today.” And they said, “Well, what I really need is something that does this.” And I said, “Oh, well, we can do that. Here’s how we would do it.” And we showed them the roadmap. So it’s both. I will take that information back to my team and say, “Hey, we now need to build this.”

Gardner: Is there still a language, culture, or organizational divide? It seems to me that you’re talking apples and oranges when it comes to business requirements and what the data and technology can produce. How can we create a Rosetta Stone effect here?

Norton: In the certification, we are focused on supporting that data scientists have to understand the business problems. Everything begins from that.

In the certification, we are focused on supporting that data scientists have to understand the business problems. Everything begins from that. Knowing how to ask the right questions, to scope the problem, and be able to then translate is essential.
Knowing how to ask the right questions, to scope the problem, and be able to then translate [is essential]. You have to look at the available data and infer some, to come up with insights and a solution. It's increasingly important that you begin with the problem. You don't begin with your solution and say, “I have this many things I can work with.” It's more like, “How we are going to solve this and draw on the innovation and creativity of the team?”

Gardner: I have been around long enough to remember when the notion of a chief information officer (CIO) was new and fresh. There are some similarities to what I remember from those conversations in what I’m hearing now. Should we think about the data scientist as a “chief” something, at the same level as a chief technology officer (CTO) or a CIO?

Chief Data Officer defined 

Fleming: There are certainly a number of organizations that have roles such as mine, where we've combined economics and analytics. Amazon has done it on a larger scale, given the nature of their business, with supply chains, pricing, and recommendation engines. But other firms in the technology industry have as well.

We have found that there are still three separate needs, if you will. There is an infrastructure need that CIO teams are focused on. There are significant data governance and management needs that typically chief data officers (CDOs) are focused on. And there are substantial analytics capabilities that typically chief analytics officers (CAOs) are focused on.

It's certainly possible in many organizations to combine those roles. But in an organization the size of IBM, and other large entities, it's very difficult because of the complexity and requirements across those three different functional areas to have that all embodied in a single individual.

Gardner: In that spectrum you just laid out – analytics, data, and systems -- where does The Open Group process for a certified data scientist fit in?


Fleming: It's really on the analytics side. A lot of what CDOs do is data engineering, creating data platforms. At IBM, we use the term Watson Data Platform because it's built on a certain technology that's in the public cloud. But that's an entirely separate challenge from being able to create the analytics tools and deliver the business insights and business value that Maureen and George referred to.

Gardner: I should think this is also going to be of pertinent interest to government agencies, to nonprofits, to quasi-public-private organizations, alliances, and so forth.

Given that this has societal-level impacts, what should we think about in improving the data scientists’ career path? Do we have the means of delivering the individuals needed from our current educational tracks? How do education and certification relate to each other?

Academic avenues to certification

Fleming: A number of universities have over the past three or four years launched programs for a master’s degree in data science. We are now seeing the first graduates of those programs, and we are recruiting and hiring.

I think this will be the first year that we bring in folks who have completed a master’s in data science program. As we all know, universities change very slowly. It's the early days, but demand will continue to grow. We have barely scratched the surface in terms of the kinds of positions and roles across different industries.

That growth in demand will cause many university programs to grow and expand to feed that career track. It takes 15 years to create a profession, so we are in the early days of this.


Norton: With the new certification, we are doing outreach to universities because several of them have master’s in data analytics programs. They do significant capstone-type projects, with real clients and real data, to solve real problems.

We want to provide a path for them into certification so that students can earn, for example, their first project profile, or experience profile, while they are still in school.

Gardner: George, on the organic side -- inside of companies where people find a variety of tracks to data scientist -- where do the prospects come from? How does organic development of a data scientist professional happen inside of companies?

Stark: At IBM, in our group, Global Services, in particular, we've developed a training program with a set of badges. They get rewarded for achievement in various levels of education. But you still need to have projects you've done with the techniques you've learned through education to get to certification.

Having education is not enough. You have to apply it to get certified.

Gardner: This is a great career path, and there is tremendous demand in the market. It also strikes me as a very fulfilling and rewarding career path. What sorts of impacts can these individuals have?
Learn How to Become
Certified as a
Data Scientist
Fleming: Businesses have traditionally been managed through a profit-and-loss statement, an income statement, for the most part. There are, of course, other data sources -- but they’re largely independent of each other. These include sales opportunity information in a CRM system, supply chain information in ERP systems, and financial information portrayed in an income statement. These get the most rigorous attention, shall we say.

We're now in a position to create much richer views of the activity businesses are engaged in. We can integrate across more datasets now, including human resources data. In addition, the nature of machine learning (ML) and artificial intelligence (AI) are predictive. We are in a position to be able to not only bring the data together, we can provide a richer view of what's transpiring at any point in time, and also generate a better view of where businesses are moving to.

It may be about defining a sought-after destination, or there may be a need to close gaps. But understanding where the business is headed in the next 3, 6, 9, and 12 months is a significant value-creation opportunity.

Gardner: Are we then thinking about a data scientist as someone who can help define what the new, best business initiatives should be? Rather than finding those through intuition, or gut instinct, or the highest paid person's opinion, can we use the systems to tell us where our next product should come from?

Pioneers of insight

Norton: That's certainly the direction we are headed. We will have systems that augment that kind of decision-making. I view data scientists as pioneers. They're able to go into big data, dark data, and a lot of different places and push the boundaries to come out with insights that can inform in ways that were not possible before.

It’s a very rewarding career path because there is so much value and promise that a data scientist can bring. They will solve problems that hadn't been addressed before.

It's a very exciting career path. We’re excited to be launching the certification program to help data scientists gain a clear path and to make sure they can demonstrate the right skills.

It's a very rewarding career path because there is so much value and promise that a data scientist can bring. They will solve problems that hadn't been addressed before.
Gardner: George, is this one of the better ways to change the world in the next 30 years?

Stark: I think so. If we can get more people to do data science and understand its value, I'd be really happy. It's been fun for 30 years for me. I have had a great time.

Gardner: What comes next on the technology side that will empower the date scientists of tomorrow? We hear about things like quantum computing, distributed ledger, and other new capabilities on the horizon?

Future forecast: clouds

Fleming: In the immediate future, new benefits are largely coming because we have both public cloud and private cloud in a hybrid structure, which brings the data, compute, and the APIs together in one place. And that allows for the kind of tools and capabilities that necessary to significantly improve the performance and productivity of organizations.

Blockchain is making enormous progress and very quickly. It's essentially a data management and storage improvement, but then that opens up the opportunity for further ML and AI applications to be built on top of it. That’s moving very quickly.

Quantum computing is further down the road. But it will change the nature of computing. It's going to take some time to get there but it nonetheless is very important and is part of that what we are looking at over the horizon.

Gardner: Maureen, what do you see on the technology side as most interesting in terms of where things could lead to the next few years for data science?

Norton: The continued evolution of AI is pushing boundaries. One of the really interesting areas is the emphasis on transparency and ethics, to make sure that the systems are not introducing or perpetuating a bias. There is some really exciting work going on in that area that will be fun to watch going forward.

Gardner: The data scientist needs to consider not just what can be done, but what should be done. Is that governance angle brought into the certification process now, or something that it will come later?

Stark: It's brought into the certification now when we ask about how were things validated and how did the modules get implemented in the environment? That’s one of the things that data scientists need to answer as part of the certification. We also believe that in the future we are going to need some sort of code of ethics, some sort of methods for bias-detection and analysis, the measurement of those things that don't exist today and that will have to.

Gardner: Do you have any examples of data scientists doing work that's new, novel, and exciting?

Rock star potential

Fleming: We have a team led by a very intelligent and aggressive young woman who has put together a significant product recommendation tool for IBM. Folks familiar with IBM know it has a large number of products and offerings. In any given client situation the seller wants to be able to recommend to the client the offering that's most useful to the client’s situation.

And our recommendation engines can now make those recommendations to the sellers.  It really hasn't existed in the past and is now creating enormous value -- not only for the clients but for IBM as well.

Gardner: Maureen any examples jump to mind that illustrate the potential for the data scientist?

Norton: We wrote a book, Analytics Across the Enterprise, to explain examples across nine different business units. There have been some great examples in terms of finance, sales, marketing, and supply chain.
Learn How to Become
Certified as a
Data Scientist
Gardner: Any use-case scenario come to mind where the certification may have been useful?

Norton: Certification would have been useful to an individual in the past because it helps map out how to become the best practitioner you can be. We have three different levels of certification going up to the thought leader. It's designed to help that professional grow within it.

Stark: A young man who works for me in Brazil built a model for one of our manufacturing clients that identifies problematic infrastructure components and recommends actions to take on those components. And when the client implemented the model, they saw a 60 percent reduction in certain incidents and a 40,000-hour-a-month increase in availability for their supply chain. And we didn't have a certification for him then -- but we will have now.

Gardner: So really big improvement. It shows that being a data scientist means you're impactful and it puts you in the limelight.

IBM has built an internal process that matches with The Open Group. Other companies are getting accredited for running a version of the certification themselves, too.
Stark: And it was pretty spectacular because the CIO for that company stood up in front of his whole company -- and in front of a group of analysts -- and called him out as the data scientist that solved this problem for their company. So, yeah, he was a rock star for a couple days.

Gardner: For those folks who might be more intrigued with a career path toward certification as a data scientist, where might they go for more information? What are the next steps when it comes to the process through The Open Group, with IBM, and the industry at large?

Where to begin

Norton: The Open Group officially launched this in January, so anyone can go to The Open Group website and check under certifications. They will be able to read the information about how to apply. Some companies are accredited, and others can get accredited for running a version of the certification themselves.

IBM recently went through the certification process. We have built an internal process that matches with The Open Group. People can apply either directly to The Open Group or, if they happen to be within IBM or one of the other companies who will certify, they can apply that way and get the equivalent of it being from The Open Group. 

Listen to the podcast. Find it on iTunes. Read a full transcript or download a copy. Sponsor: The Open Group.

You may also be interested in: